Recommended
Driver >=460.32.03
TensorFlow 2.11.0 + CUDA 11.2
Generate a production-ready Dockerfile with verified compatibility
Configuration Summary
Framework
TensorFlow 2.11.0
CUDA Version
11.2
Python Support
3.7, 3.8, 3.9, 3.10
Min Driver
>=460.32.03
Note: 稳定的 TF 2.x 中期版本
Install Command
pip install tensorflow==2.11.0 What's in TensorFlow 2.11.0
- Stable TensorFlow 2.x mid-cycle release
- Improved Keras API stability
- Enhanced mixed precision training
- Better CUDA 11.2 optimization
Incremental improvements over 2.10, preparing for 2.12+ changes
Best For
Use Cases
- Long-term production deployments
- Systems requiring TF 2.11.x compatibility
- Bridge between TF 2.10 and 2.12+
CUDA 11.2 Advantages
- Legacy GPU support
- Windows native development (TF 2.10)
- Older system compatibility
Limitations: Limited to older TensorFlow versions
Generate Dockerfile
Configuration
Local GPU or CPU environment
稳定的 TF 2.x 中期版本
Requires NVIDIA Driver >=460.32.03
Dockerfile
1# syntax=docker/dockerfile:12# ^ Required for BuildKit cache mounts and advanced features34# Generated by DockerFit (https://tools.eastondev.com/docker)5# TENSORFLOW 2.11.0 + CUDA 11.2 | Python 3.116# Multi-stage build for optimized image size78# ==============================================================================9# Stage 1: Builder - Install dependencies and compile10# ==============================================================================11FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04 AS builder1213# Build arguments14ARG DEBIAN_FRONTEND=noninteractive1516# Environment variables17ENV PYTHONUNBUFFERED=118ENV PYTHONDONTWRITEBYTECODE=119ENV TORCH_CUDA_ARCH_LIST="7.5;8.0;8.6"2021# Install Python 3.11 and build tools (native)22RUN apt-get update && apt-get install -y --no-install-recommends \23 python3.11 \24 python3.11-venv \25 python3.11-dev \26 build-essential \27 git28 && rm -rf /var/lib/apt/lists/*2930# Create virtual environment31ENV VIRTUAL_ENV=/opt/venv32RUN python3.11 -m venv $VIRTUAL_ENV33ENV PATH="$VIRTUAL_ENV/bin:$PATH"3435# Upgrade pip36RUN pip install --no-cache-dir --upgrade pip setuptools wheel3738# Install TensorFlow with BuildKit cache39RUN --mount=type=cache,target=/root/.cache/pip \40 pip install tensorflow==2.11.04142# Install project dependencies43COPY requirements.txt .44RUN --mount=type=cache,target=/root/.cache/pip \45 pip install -r requirements.txt4647# ==============================================================================48# Stage 2: Runtime - Minimal production image49# ==============================================================================50FROM nvidia/cuda:11.2.2-cudnn8-runtime-ubuntu20.04 AS runtime5152# Labels53LABEL maintainer="Generated by DockerFit"54LABEL version="2.11.0"55LABEL description="TENSORFLOW 2.11.0 + CUDA 11.2"5657# Environment variables58ENV PYTHONUNBUFFERED=159ENV PYTHONDONTWRITEBYTECODE=160ENV NVIDIA_VISIBLE_DEVICES=all61ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility6263# Install runtime dependencies (native Python 3.11)64RUN apt-get update && apt-get install -y --no-install-recommends \65 python3.11 \66 libgomp167 && rm -rf /var/lib/apt/lists/*6869# Create non-root user for security70ARG USERNAME=appuser71ARG USER_UID=100072ARG USER_GID=$USER_UID73RUN groupadd --gid $USER_GID $USERNAME \74 && useradd --uid $USER_UID --gid $USER_GID -m $USERNAME7576# Copy virtual environment from builder77COPY --from=builder --chown=$USERNAME:$USERNAME /opt/venv /opt/venv78ENV VIRTUAL_ENV=/opt/venv79ENV PATH="$VIRTUAL_ENV/bin:$PATH"8081# Set working directory82WORKDIR /app8384# Copy application code85COPY --chown=$USERNAME:$USERNAME . .8687# Switch to non-root user88USER $USERNAME8990# Expose port91EXPOSE 80009293# Default command94CMD ["python", "main.py"]
🚀 Recommended
High-Performance GPU Cloud
Deploy your Docker containers with powerful NVIDIA GPUs. A100/H100 available, 32+ global locations.
- NVIDIA A100/H100 GPU instances
- Hourly billing, starting at $0.004/h
- 32+ global data centers
- One-click container & bare metal deployment
Frequently Asked Questions
What NVIDIA driver version do I need?
For TensorFlow 2.11.0 with CUDA 11.2, you need NVIDIA driver version >=460.32.03 or higher.
Run nvidia-smi to check your current driver version.
How do I install TensorFlow with CUDA support?
TensorFlow 2.11.0 uses the following installation command:
pip install tensorflow==2.11.0 Since TensorFlow 2.15+, CUDA libraries are bundled via tensorflow[and-cuda].
How do I verify GPU access in the container?
After building your image, run:
docker run --gpus all your-image python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
This should show available GPU devices.